If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2-64x-21=0
a = 20; b = -64; c = -21;
Δ = b2-4ac
Δ = -642-4·20·(-21)
Δ = 5776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5776}=76$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-76}{2*20}=\frac{-12}{40} =-3/10 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+76}{2*20}=\frac{140}{40} =3+1/2 $
| -8n-6-3n=-6 | | 2.5(x)=2x2−3x+7 | | 9x-49=-60-70 | | 4x2+40x+84=0 | | 7x-4(3x-42)=133 | | X^2/6+5x/2+9=0 | | -3(8p+5)-2(5-23p)=3(9+7p) | | 2y+3=8y | | x+7=−x−7 | | 9/2x-3/2=69/2 | | 56-x=184 | | 5a-6=30÷6 | | 5v+2=-3 | | 121/1=11x/1 | | (7x+6)=5x | | .5(x+3)-0.7(x+3)=-0.2x-0.6 | | 4x^2-16+14=0 | | -.5m-.75=2.15 | | 3k+7/5=2 | | 9+-2x=23 | | 4n+6-2n=2n(n+3 | | (2x/(x+5))+(3/(x+9))=1 | | -x2+3x+10=0 | | 0.9+3z=6 | | 5(y-4)=7(2y | | a+2-5a=-14 | | 2x^2+21x+14=0 | | 2(3x-4)÷5(2x+3)=9 | | 2x^2+21+14=0 | | 14w-5w=27 | | 18(t-2)+3t=7(3t+2)-10 | | 78=x/2+(x−6) |